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ABSTRACT

We describe numerical computations on the Connection Machine, a
massively parallel hypercube architecture with 65,536 single-bit proces-
sors and 32 Mbytes of memory. A parallel extension of COMMON
LISP, provides access to the processors and network. The rich software
environment is further enhanced by a powerful virtual processor capabil-
ity, which extends the degree of fine-grained parallelism beyond
1,000,000.

We briefly describe the hardware and indicate the principal features
of the parallel programming environment. We then present implementa-
tions of SOR, multigrid and pre-conditioned conjugate gradient algo-
rithms for colving partial differential equations on the Connection
Machine. Despite the lack of floating point hardware, cemputation rates
above 100 megaflops have been achieved in PDE solution. Virtual pro-
cessors prove to be a real advantage, easing the effort of software
development while improving system performance significantly. The
software development effort is also facilitated by the fact that hypercube
communications prove to be fast and essentially independent of distance.
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1. Introduction

This paper is part of an ongoing effort io exploit parallelism in the solution of
equations arising in Computational Fluid Dynamics. We have previously presented
implementations of conjugate gradient and multigrid solvers on other parallel architec-
tures, including the Denelcor HEP shared memory computer(1, 2,3, 4,5, 6], the 32 pro-
cessor Caltech Mark II Hypercube and the Intel iPSC d7 processor, a 128 processor
Hypercube[7,8,9,10,11]. We have also developed an extensive portable linear alge-
bra package for such systems, see{10,11]. The current work extends these studies to
the range of massively parallel architectures, beginning with the Connection Machine,
a 65,536 processor hypercube architecture. The Connection Machine (CM in the
sequel) is different from other architectures we have worked with in several respects.
We will discuss some of these differences in this introduction. For a more complete
discussion of the Connection Machine, and of the implementation of numerical algo-

rithms on the machine, we refer to our paper[12].

Most significantly, the CM is a massively parallel machine. The CM therefore
requires that applications be decomposed at a very fine level, presenting an interesting

challenge in implementing applications. The CM processors are simple one-bit
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processors. Floating point operations, which arc supported in micro-code, consume
many (up to 1,000) machine cycles, with resulting floating point performance on the
order of 1 kflops per processor. Despite this, peak rates of 120 Mflops have been
attained on 32-bit vector operations using 64k processors, demonstrating the power
achievable with massive parallelism. Each processor is associated with only 512 bytes
of memory. This is compatible with the fine-grained parallelism, although it ensures
that inter-processor communication is required more frequently on the CM than on
coarser-grained machines. Fortunately communication on the CM is fast and has

minimal communication startup cost.

The CM is an SIMD machine rather than the MIMD architecture of other hyper-
cubes. While all processors receive identical instructions on each cycle, some proces-
sors may choose to ignore an instruction, depending on th= setting of an internal flag.
Logical expressions are implemented using this facility, although some care is required
as each nested binary branch will incur an effective increase in execution time for the

expression of a factor of 2.

The current CM software environment is entirely LISP based, with the standard
programming language being *LISP, a parallel extension of COMMON LISP. The
powerful user-friendly software environment of the CM is unique among current paral-
lel processors. Support for parallelism is fully integrated into the programming
language. To a large extent the message passing characteristics of the hypercube net-
work are hidden from the programmer. The system provides support for distributed

data types and has facilities for parallel global memory reference.

A final feature of the CM architecture is the possibility of using virtual proces-
sors, extending the apparent degree of parallelism to over a million. Virtual processors
perform more slowly and with less local memory than physical processors, but total
machine throughput may actually be increased. The ability to program complex appli-

cations in terms of very fine-grain parallelism should not be underestimated. We
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illustrate with the example of a typical grid-based computation. On medium-scale
machines, it is necessary to perform two independent decompositions of data and asso-
ciated code. First, the data is broken into blocks of grid points, with one block associ-
ated to each procecsor. Within each processor a further decomposition is required
down to the single point level. On the CM, with up to a million virtual processcrs,

one can generally avoid the first step entirely.

For the rationale behind the CM design see the book by Hillis{13]. Further infor-
mation on the CM architecture is available in documents from Thinking Machines Cor-

poration, for example[14)].

Sections 2 and 3 introduce the CM hardware and software in more detail. Sec-
tions 4 and 5 describe the implementation of th» multigrid and conjugate gradient algo-
rithms on the CM, while section 6 presents performance measurements for the CM in

PDE solution.

2. Connection Machine Hardware

The CM is accessed through a standard architecture front end computer, currently
the Symbolics 3600, though a VAX interface is about to be released. Connection
machine programs contain two types cf statements - those operating on single data
items, wnich are executed in the front end, and those operating on whole data sets
which are executed in the CM. *LISP instructions for the CM are sent first to a
micro-controller which expands them into a series of machine instructions. Floating

point instructions are expanded in this way.

The CM consists of 4096 chips, each with 16 processors plus associated memory,
for a total of 65536 processors. The chips form a 12 dimensional hypercube. Within
cach chip the processors are fully connected. Each chip also has a router module, a
communication processor that allows any on-chip processor to communicate with any

remote processor.
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In addition to the router hypercube network there is a separate communication
facility called the NEWS grid. Each processor is wired to its four nearest neighbors in
a two-dimensional rectangular grid. Communication on the NEWS grid is extremely
fast and is encouraged for those processes that can avail of the limited interconnections
involved. Long range communication, even on a grid, is best done however with the

router sysiem.

An important feature of the CM system is support for virtual processors. The
user may specify that each physical processor is to simulate a small rectangular array
of virtual processors. The current machine provides up to 1,048,576 virtual processors.
All system facilities are transparent to virtual processes, except that such processors
appear to be correspondingly slower and have only a fraction of the 512 bytes of
memory of a physical processor. The NEWS grid and hypercube communic-tion facil-

ities are supported between arbitrary virtual processors.

3. The CM Programming Environment

The programming languages available on the CM are a parallel extension of
COMMON LISP, called *LISP, and an assembly language called PARIY. For a com-
plete description of COMMON LISP sce the book by Steele[15]). For further details of
the *LISP language seec the Thinking Machine Corporation’s *LISP manual[16].

*LISP is an extension to COMMON LISP that includes facilities for utilizing
parallelism, The prirnary data extension is the concept of a pvar, or parallel variable.
Pvars are defined using the *defvar function, in the same way as defvar is used for
defining ordinary LISP variables. A pvar can be thought of as a sequence of ordinary
LISP variables, one per processor. Parallel constants are supported with a special
function "!!": if ¢ is a LISP object, then ( !! ¢ ) returns a pvar which contains the
value ¢ in every processor. Parallel versions of many standard LISP operators are

defined, typically with !! appended to the LISP name. For example: /
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* 2 p)

applies the parallel multiply operation *!! to the constant pvar (!! 2 ) and the pvar p.
Similarly there are parallel versions of logical operators such as <!!, and!!, and so

on.

Logical and looping constructs parallel those in LISP and sllow an operation to
be performed over any subset of processors. This selection mechanism is very power-
ful and is a primary mechanism for providing non-homogeneous SIMD instructions.

Selection scoping is block structured.

Since pvars are distributed across the CM, it is essential to be able to locate
neighboring elements of a pvar, and to communicate in parallel with other processors.
This is acromplished by a set of pvar functions which provide parallel global memory
references. Processor addressing in these functions may be either absolute or relative,

and may be performed using either grid or hypercube indexing.

4. Parallel Multigrid

The basic multigrid idea[17, 18, 19, 20,21, 22, 7] involves two aspects - the use of
relaxation methods to dampen high-frequency errors and the use of multiple grids to
allow low-frequencies to be relaxed inexpensively. For the Connection Machine, there
is an important difference in approach from that on other parallel machines. The CM
has only 512 bytes of memory per processor, which means that it is not possible to
store a substantial subgrid of points per process.r as was done in our other implemen-
tations[7). Instead, we have chosen to assign only one grid point per processor. This
may seem wasteful of memory, but is not really so because of the CM’s virtual pro-
cessor ability. By using sufficiently many virtual processors all memory may be fully
utilized.

In our multigrid implementation, the coarse grid points are always assigned to the

same processor as their corresponding fine grid points. Because of memory limitations
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this implies a restriction on the number of multigrid levels that can be accommodated.
When relaxation is performed on coarse grids, most processors are idle. As a result,
V-cycles are more favored than W-cycles on the CM, and multigrid iterations with
more than about 5 levels are also undesirable. This is borne out by our experiments

presented in the results section.

We have used parallel versions of modified Jacobi relaxation and of red-black
Gauss-Seidel relaxation. There is little obvious advantage to using red-black relaxation
on the CM since it requires 2 successive sweeps each involving only half of the grid
points. Consequently half of the processors are unused at any time. Thus the kncwn
improved convergence rate of red-black Gauss-Seidel iteration, which is twice as fast
for the Poisson Equation, is canceled by the 50% reduction in attainable CM utiliza-
tion. We note however that if 2 or more virtual processors are used per physical pro-
cessor, then this disadvantage disappears - all of the physical processors may remain
active at all times. We also note tl:at with one grid point per processor, and a com-
pletely paralle] execution, lexicographic Gauss-Seidel relaxation reduces to ordinary

Jacobi relaxation.

We accomplish the distribution of data to various grid levels, by representing the
solution, error, ard right-hand-side on each grid level as a *LISP pvar. In particular
the hypercube is organized as a rectangular mesh of virtual processors. Each grid is
associated with a selection pvhr called domain which is simply a 1-bit pvar initialized
to be true at all virtual processors that contain a grid point of that grid, and false else-
wliere. Relaxation is performed only for domain points for that grid. The same

mechanism allows irregular rectangular grids to be handled as easily as regular grids.

The finc-grid residual equation is projected to the coarse grid using full injection
in the modified Jacobi case or half-injection in the red-black Gauss-Seide) case. As
discussed previously, no communication is involved here since the relevant fine-grid

point is in the same processor as the target coarse-grid point.
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To control termination of iteration, norms of error values or residuals need to be
calculated. These are evaluated by using the *LISP function *sum which tree-sums
the elements of a pvar over a set of processors. In terms of *sum we can define a
norm-vector function, to evaluate the norm of a vector stored as a pvar on an arbitrary

subset of processors, again specified by selection.

Having solved the error equation on the coarse grid, the solution on the fine grid
has to be npdated by addition of a suitable interpolation of the computed coarse grid
error. We have used linear interpolation at this point. This step does involve com-
munication, in fact over long distances in the case of very coarse grids, in which case

hypercube communication channels are used.

S. Parallel Conjugate Gradient

Discretization of elliptic narial differential equations by finite element or finite
difference methods leads to systems of equations with sparse coefficient matrices. The
parallel conjugate gradient method we have developed on the CM, solves systems of
equations with such coefficient matrix structures. This allows us to parallelize the
solution of finite element discretizations of arbitrary and even variable degree with

high efficiency.

The preconditioned conjugate gradient method[23, 24, 25,26,27,28] finds the
solution of the system of equations Ax = f (A is assumed to be positive definite sym-
metric) to a specified accuracy € by performing an iteration on the vector x, which has
been appropriately initialized. Apart from simple vector linear algebra, this iteration
involves only the operations x — Ax, »~ — Bx, <x,y>, and simple vector linear algebra
operations. Here B is an approximate inverse of A , which is also assumed to be posi-
tive definite symmetric, and <x,y> denotes the inner product of vectors x and y. A
carefully chosen preconditioning operator B can be effective in improving substantially

the convergence rate of the unpreconditioned algorithm (case B=/)[25].
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We parallelize the algorithm by exploiting parallelism in every operation of the
iterat:un. All of the vectors in the algorithm are allocated as *LISP pvars. The
communication-intensive operation p — Ap is implemented as a *LISP function which
stores the value of Ap into a pvar ap. For our Poisson equation test problem with a
5-point discretization on a rectangle, this function is easily written using the global
memory access functions mentioned in section 3. For simplicity we have chosen the
pre-conditioning operator to be the identity operator. The other communication inten-
sive operations in the conjugate gradient algorithm are the several inner products of
vectors which are required. These are trivially implemented using the *swm *LISP

function.

6. Computational Results

As a test problem we have solved a Poisson equation on a rectangle using SOR
relaxation, multigrid and conjugate gradient methods. Zero Dirichlet boundary condi-
tions were imposed on all sides. Iterations were continued until the initial residual was
reduced by a specified factor, usually .001. Most of the results reported were obtained
on a 16k processor CM, with some measurements on 32k processors. However all
indications are that results demonstrated here on 16k and 32k systems scale essentially

linearly to the 64k system.

We performed various tests using 4 and 8 virtual processors per physical proces-
sor, with up to 256k virtual processors. Such a configuration provides an excellent test
of the ability to effectively use very fine-grained parallelism. We plot two quantities
that describe system performance. The megaflops attained in a computation is the
average number of millions of floating point operations executed per second. We
count only standard floating point arithmetic operations such as addition and multipli-
cation. A closely related quantity methods is the time per iteration, defined by taking

the total computation time for a solution and dividing it by the¢ number of iterations
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used. The grid size label on the following graphs denotes the number of grid points in

each dimension.

6.1. Relaxation

In Figure 1 we present the results for solution of the equations using straight SOR
relaxation. The relaxation parameter w = .8 for successive over-relaxation in Jacobi
iteration has been used. Two curves are presented in Figure 1, the shorter one is for a
16k processor machine with 1 virtual processor per physical processor, while the
second curve is for a 32k processor machine with 8 virtual processors per physical
processor. The peak rate of 52 Mflops obtained in the latter case, corresponds to about
104 Mflops for a full 64k processor Connection Machine. Relaxation performance
improves rapidly with grid size, until it reaches its optimal value with a grid which
fills the virtual processor uetwork.

The relaxation results in Figure 1 involved only nearest neighbor communication
patterns. Multigrid requires relaxation on coarser grid levels, where commurication
over substantially longer distances is required. We measure the effects of long range
communication in Figure 2, where we plot time per SOR relaxation versus the inter-
processor distance involved. A series of grids was used each of which had the same
number of points, but with the distance between grid-points, which we refer to as the
nearest neighbor distance, successively increasing. We used 32 different nearest
neighbor distances. As mentioned previously, there are two distinct communication
facilities on the CM - the rectangular NEWS grid and the hypercube Router network.
Each of the relaxation tests was performed using whichever communication method
was faster. The flat later part of the curve in Figure 2 indicates the remarkable fact

that hypercube communication on the CM is essentially independent of distance.
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6.2. Muitigrid Results

All multigrid solutions were obtained using V-cycles, with 3 modified Jacobi
relaxations per grid level. The coarsest grid level was treated identically to the other
levels. In Figure 3 we present measurements of multigrid performance on a 16k pro-
cessor machine. All computations were on a 112xil2 grid which allows for even
sub-divisions down to 5 levels. The curve in Figure 3 shows the time required for the
complete multigrid solution as a function of the number of levels used in solution. In
standard multigrid fashion the solution time drops rapidly as the number of grid levels
increases. One might conclude that multigrid is performing well on the CM. This is
not in fact true as is borne out by the bar chart in Figure 3 which represents megaflops
attained in multigrid solution as a function of the number of levels used. Here one
sees that the maximum performance of over 19 Mflops when only one level is used

(i.e. straight relaxation), drops rapidly to jist over 3 Mflops when § levels are used.

To understand this behavior, we note that in the multi-level cases most processors
are sitting idle much of the time, thus diminishing the ability to use available
megaflops. Even on the highest level grid only 75% of the available processors are in
use. On a fifth-level grid, only 49 of the available 16k processors are active. Yet the
algorithm spends the same amount of time on such a grid as it does on the finest grid
since the CM is an SIMD machine. It is actually remarkable that megaflops rates do
not decay even more severely than indicated. Another fcature of Figure 3 is the rather
sharp drop in performance between level 1 and level 2. This is explained by the fact
that in going from a 1-level problem (relaxation) to 2 levels a variety of overheads are

incurred, including residual computations and coarse-to-fine grid transfers.

We conclude that standard multigrid as implemented here is not a particularly

good algorithm for a massively parallel machine such as the Connection Machine!,

1. This observation has prompted further research into parallel multigrid algorithms, and has
resulted in a new cluss of multiple grid algorithms with much better megaflops rates, see(29].
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6.3. Conjugate Gradient Performance

Conjugate gradient performance is much more satisfactory than for multigrid
because all processors may be kept busy most of the time, with the exception that dur-
ing evaluation of the many inner products required by conjugate gradient most pro-es-
sors are inactive. This leads to a reduction in attained megaflops as compared to
relaxation, but overall performance is still quite satisfactory, being in the region of 80

Mflops for a full 64k machine.

We present the results for conjugate gradient solution in Figure 4, where again we
plct megaflops as a function of grid size. There are three curves, corresponding
respectively to the cases (i) 16k virtual processors on 16k physical processors, (ii) 64k
virmal processors on .l6k physical processors and (iii) 256k virtual processors on 32k
physical processors. Note in particular the relationship of the first two curves. The
top point on these two curves both correspond to computations on 16k physical proces-
sors in which all processors are in use - in the first case computing with 16k grid
points, and in the other case with 64k grid points. We see that higher megaflops are
attained by using virtual processors. With virtual processors, much of the inter-
processor communication is occurring within a single physical processor and thus

external communication overhead is lower.
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